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Executive Summary

The scenario of interest is a two second firing of a rocket engine in an underground
enclosure intended to mimic the effect of burning a high temperature accelerant (HTA).
Because of the unusual nature of the problem. at least in the context of typical fire scenarios,
two types of numerical models have been applied to the problem. The first, a zone model,
divides each room in the enclosure into one or two control volumes, and the transport of mass
and energy from the burn room is estimated from the basic conservation laws. The second
model, a field model designed for relatively low Mach number flows, solves the conservation
equations of mass. momentum and energy discretized over hundreds of thousands of cells.
The first approach has the advantage of providing a fast, robust description of the overall
thermodynamic quantities of interest. The second approach provides a much more detailed
description of the temporal and spatial evolution of these quantities.

The energy release for the two second firing of the rocket is enormous. In all. 245 kg (540
1b) of solid fuel is consumed in two seconds. The total energy released is given as 1093 cal/g
(4575 kJ/kg). Of this, it is estimated that about half is lost to the walls or converted to
kinetic energy. The remaining energy creates a tremendous pressure and temperature rise
throughout the facility. Both the zone model (CFAST2.0) and the field model (NIST Large
Eddy Simulation) predict that the pressure in the enclosure after the 2 s firing will rise about
1 atmosphere. and the temperature about 1500 C. Both models simulate one minute following
ignition, by which time the pressure in the entire enclosure has returned to atmospheric and
the temperature to several hundred degrees over ambient, depending on location. There is
little convective motion by this time. and the temperature decrease is largely dependent on
the absorption of heat by the walls.



1 Introduction

To assess the impact of a fire involving a high temperature accelerant (HTA) on a relatively
small enclosure, it is possible to simulate numerically the transport of combustion products
throughout using a variety of computational techniques. However. the difficulty in simulating
the effects of a rapid and violent release of heat in one small room is that there are three
rather distinct flow regimes which govern the transport of smoke and hot gases from the
room throughout the entire enclosure. The first can be characterized as pressure-driven.
the second buovancy-driven. and the third dominated by static heat transfer. During the
pressure-driven phase, which in this case lasts only a few seconds. the rapid generation
of mass and energy in a small room of the enclosure increases the pressure in the room to
nearly twice the atmospheric pressure, driving the hot gases out at speeds approaching sonic.
The fact that the enclosure is underground and vented only through a small opening to the
atmosphere enhances the effect of the pressure. After the source of heat is removed, however,
the pressure in the burn room and the overall enclosure quickly equilibriate at which point
the flow becomes dominated by the buovancy-induced motion of the hot gases spreading
throughout the enclosure and creating a stratified temperature distribution. This second
phase lasts on the order of a minute. Following this, there is little convective motion. and
heat is gradually absorbed by the walls and lost through the vent.

While it is possible to numerically simulate the entire experiment by directly solving the
full set of Navier-Stokes equations for a compressible fluid with the inclusion of heat transfer
and thermal radiation, this would require a large amount of computational resources, most of
which would be devoted to resolving the extremely high speed. high temperature flow out of
the rocket nozzle. The spatial resolution for such a calculation would be extremely limited.
However, the numerical simulation of the less violent, buovancy-driven flow regime could be
greatly enhanced by taking advantage of the relatively low speeds and modest temperatures.
Tyvpically room fire simulations are of this type. and a numerical model has been developed
at NIST to solve the relevant flow equations [3]. The technique is referred to as a large eddy
simulation (LES). The term “large eddy” refers to fluid motion on length scales which are
about two orders of magnitude smaller than the overall enclosure length. To achieve this
tvpe of resolution means that the enclosure must be discretized into roughly one million cells,
each of which can be thought of as a control volume in which mass, momentum and energy
are conserved. Of course. this requires a fairly powerful computer to implement: but because
of the specialized nature of the algorithm. it demands far less than would be expected. In
fact. these tvpes of simulations are currently performed on desktop workstations rather than
on supercomputers as was the practice only a few years ago.

The way to achieve such performance is to balance all aspects of the problem so that
high accuracy in one area is not negated by low accuracy in another. Specifically, reasonable
approximations can be made about the rocket engine so as to enable the computation of the
flow over a fairly long time period. This would be very difficult. if not impossible. if details
of the high speed flow out of the rocket nozzle were desired in addition to the long term effect
on the entire enclosure. Thus. the approach taken is to distribute the energy release of the
rocket throughout the entire burn room. making the assumption that the violent firing of
the rocket creates a well-mixed zone whose average pressure and temperature can be easily
calculated. This mimics the approach taken by a so-called “zone model”. where the enclosure
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is divided up into a few control volumes (one of which is the burn room) in which mass and
energy conservation are enforced. Indeed, a zone model (CFAST2.0 [1]) has been applied
to the problem as a check on the results of the more sophisticated large eddy simulation.
Because the problem is highly unusual, using the zone model to check global quantities has
greatly increased the confidence in the numerical results.

2 Problem Description

The floor plan of the underground test structure is shown in Fig. 1. The experiment is
to consist of the firing of a rocket engine in the room designated R1 (top. left). For the
numerical modeling to be discussed here, the details of the rocket engine are not necessary.
The only information required is the total amount of fuel consumed and the total energy
release. The rocket engine is to be fired for 2 seconds during which time it is estimated that
245 kg (540 1b) of fuel will be consumed. It is estimated that the total energy content of the
fuel is 1093 calories per gram, of which 646 cal/g is converted into kinetic energy and 447
cal/g into the internal energy of the rocket exhaust. The goal of the numerical simulation is
to predict the temperatures and pressures to be expected throughout the enclosure for the
first minute of the test. Two approaches are taken. The first is a zone model, CFAST2.0 [1].
which will be described in the next section. Next, a field model. the NIST Large Eddy
Simulation. is applied to the problem. This second model is used internally at NIST on a
variety of problems, but is not yet available externally.

3 Zone Modeling of the Pressure-Driven Flow

Following is a basic description of zone models, together with the results of one used widely
by the fire research community, CFAST2.0. A zone model as applied to typical enclosure
fires assumes that each room or compartment may be divided into two distinct zones, a hot
upper laver and a cold lower layer. Each zone is characterized by an average temperature, and
conservation equations of mass and energy dictate the movement of the hot gases from zone
to zone and room to room. This approach is applied to multi-room enclosures to estimate
the rate at which the smoke spreads and the average temperatures one might expect to find
in each room.

The simplest approach to the scenario described above is to consider the underground
facility shown in Fig. 1 as two compartments — the burn room and all the other rooms
combined. Also. during the firing of the rocket and shortly thereafter, each compartment
may be characterized as a single zone with a single averaged temperature and pressure. For
this simple description, a mass and energy conservation equation may be applied to each
“room”. resulting in the following four ordinary differential equations for the pressure and
density of each:

Burn room mass conservation
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Figure 1: Floor plan of the underground facility. All dimensions are in meters.
The height of the rooms is 3.05 m (10 ft). The walls appear to have negligible
width but in reality are 0.46 m thick between rooms and 0.76 m thick at exterior
walls. Below Rooms R6 and R10 are similarly sized rooms connected via a stair-
way in hallway H2. Room R10 and the two downstairs rooms are all connected,
and vented to the atmosphere through a vertical vent approximately 35 cm in
diameter. It is assumed that this is the only ventilation from the enclosure to
the atmosphere. The area in the lower left hand side of the figure is sealed off
and assumed to play no part in the scenario outlined here.



[ Zone Model Simulation Parameters]

hy | 4575 kJ/kg (1093 cal/g)
8 | see discussion below

m | 123 kg/s (270 1b/s)

V2 | 1550 m? (54740 ft2)

V. | 203 m® (7170 £t°)

Ap | 1.95 m? (21 f1?)

Ay | 0.13 m? (1.4 {t?)

0} 1.4

Co | 0.70

po | 1.226 kg/m® (0.076 1b/ft3)
Py | 101.3 kPa (1 atm)

Table 1: Parameters used in the CFAST2.0 modeling simulation of the rocket
firing.

Enclosure mass conservation
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Burn room mass and energy conservation
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Enclosure mass and energy conservation
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Here V" is volume, A is area, p density. P pressure. 1 mass flux from the engine, hix the
total energy content of the fuel (the exit sensible enthalpy of the rocket exhaust), and A the
fraction of the sensible enthalpy converted to kinetic energy, lost to the walls. radiation. ete.
The orifice coefficient (Y is the fraction of the total potential mass flux through a doorway or
vent due to a pressure differential. The subscript “r” refers to the burn room, “¢” the other
compartments of the enclosure combined., “E™ the doorway between the burn room and the
other compartments. *1™" the vent. and “0" the atmosphere outside. The parameters used
to simulate the first couple of seconds of the experiment are listed in Table 1.

In addition to the basic conservation equations described above. CFAST?2.0 contains
additional routines to estimate heat transfer to walls, oxvgen depletion, etc. Most of these
features apply to more typical fire growth problems and do not apply to the problem at
hand. Only heat transfer to walls has been retained. The largest uncertainty in prescribing
input parameters for the model is in estimating the heat release rate of the fuel. The energy
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Figure 2: CFAST2.0 predicted average pressure and temperature for the burn
room (solid line) and the rest of the enclosure (dashed line).

from the rocket fuel (1093 cal/g) is broken down as kinetic energyv of the jet exiting the
nozzle (616 cal/g) and as internal energy of the hot gas exhaust (447 cal/g). These figures
are derived either from calculations or from actual temperature and velocity measurements
at the nozzle. In any event, thev depend on the specific type of rocket engine used. As
far as the zone model is concerned. the kinetic energy of the rocket exhaust at the nozzle
is not included in the estimate of the heat release rate of the fuel — the kinetic energy is
accounted for by the assumption that the gases are well-mixed. However. a certain fraction
of the kinetic energy is recovered as thermal or internal energy as the jet impinges on the
walls of the burn room; some of the kinetic energv is converted to mechanical energy which
is absorbed by the wall: and finally most of the kinetic energy remains as kinetic energy. Of
importance here is the fraction converted back to internal energy. which is estimated to be
about 25%.

After adjusting the heat release rate of the fuel, the calculation estimates that the pressure
in the burn room rises to about 1.9 atmospheres in 2 seconds. at which time the rocket engine
is turned off and the pressure in the burn room quickly equilibriates with that of the rest
of the enclosure. Gradually, the pressure will decrease to ambient due to the venting to
the atmosphere and heat loss to the boundaries. but this will take place over several tens
of seconds due to the small cross section of the vent (roughly 40 cm (16 in) in diameter).
The average temperature in the burn room rises to about 1500 C (2730 F) in 2 seconds.
while the average upper layer temperature in the rest of the enclosure rises to about 750 C
(1400 F'). After the engine is turned off and the pressure equilibriates. the flow becomes
buovancy rather than pressure driven. and the hot gases begin to stratifv. The hot gases
from the burn room spread throughout the entire enclosure, forming a hot upper laver and
a relatively cool lower layer. During this period. which will last tens of seconds. the flow is
dominated by buovant convection. After several minutes. the temperature in the burn room
approaches the average temperature of the enclosure. at which time the flow is dominated
by heat loss to the boundaries. Results of the model for the scenario described above are
summarized in Fig. 2.



4 Field Modeling of the Buoyancy-Driven Flow

The limitation of the zone model is that it only predicts average temperatures over large
volumes. For a more detailed description of the flow, the actual equations of motion must
be solved in some approximate form. Consider an ideal gas with constant eddy viscosity
and thermal conductivity driven by a prescribed heat source. The motion of the fluid is
governed by the conservation equations of mass, momentum and energy. plus an equation of
state relating the thermodynamic quantities

dp
V= (5)
(%‘I’U Vu)+\7p—pg=ﬂ(§‘7v'u—vx“’) (6)
aT dp T T 7
(E—Fu VT) (dt—l-u Vp)—HV'WT @
p:RpT (8)

Here, all symbols have their usual fluid dynamical meaning: p is the density. u the velocity
vector. p the pressure. g the gravity vector, g the dynamic viscosity. ¢, the constant-pressure
specific heat. 7' the temperature, & the thermal conductivity, ¢ the time. ¢ the prescribed
rate of heat release. and R the gas constant equal to the difference of the specific heats
R=c—c

Application of these equations to the problem of buoyant convection from thermal sources
has been performed by Rehm and Baum [2]. The essential piece of the analysis concerns the
decomposition of the pressure into an average background component. a hydrostatic compo-
nent and a thermally-induced perturbation. Sound waves are filtered out of the problem by
replacing the pressure in Eq. (7) with the background pressure. which is solely a function of
time. The energy and state equations are thus rewritten

oT dpo . X
(E +u VT) 5 =GtV RVT (9)
po(t) = pRT (10)

Mathematically. this modification adds an elliptic character to the syvstem of partial differ-
ential equations. This fact is exploited in the calculations after the period of intense heat
addition is over because the rate at which time steps mayv be taken will not be inhibited
by the sound speed. as they are for the unmodified Navier-Stokes equations. In fact, this
modified form of the Navier-Stokes equations has been termed “thermally expandable” to
emphasize that even though the fluid is compressible. the pressure is not the driving force
but rather the buoyancy.

As one might expect. therefore, the divergence of the flow V - u is a very important
quantity in the analysis to follow, and it is readily found by combining Eqgs. (5) and (9) and
using the equation of state (10)

ldpy 7y -1

pVout——2="1_"(4+V-kVT) (11)
5 dt g
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where 4 = ¢,/c,. Integrating Eq. (11) over the entire domain Q2 vields a consistency condition
for the background pressure po(?)

pO/ u-dS-l-L@:u(/(jdV—l- WT.ds) (12)
aQ 4 dt 5 Q an

1

where 17 is the volume of the enclosure. Notice that this equation expresses the fact that
the enclosure pressure is increased by the addition or subtraction of heat and mass.
The background pressure can be expressed in terms of a spatially averaged temperature
To(t) and density po(?)
po = RpoTlo (13)

Perturbations to each are represented by the relations
T=Tt)(1+T) : p=plt)(1+7) (14)

Now, if the background processes are taken as adiabatic, ¢.e.

P p 1/~
o _ (.ﬂ) (15)
Poo Poo

then the energy equation can be expressed in terms of the perturbation temperature T and
the divergence

oT X -

E—-i—u«VT:(l-I-T)[V-u—I-/——— (16)
The background pressure is found from Eq. (12). Mass loss through doors and windows can
be treated in several ways. For small vents, the velocity flux can be expressed in terms of
the background pressure and density. much like in the zone model formulation above

Acq 2(P0;)Poa) (po > Poc,)
/Q u-dS = (17)
d

Aco 2{poc—po)

Poc

(pD < poo)

where A is the area of the vent and ¢ is an orifice coefficient usually taken in the range
m/(r+2) = 0.61 < ¢ <0.7 [5].

The pressure is decomposed into three components. the background po(2). the hydrostatic,
and a perturbation to the hydrostatic p

p(r.t) = po(t) — polt)g= + p(r.t) (18)

where = is the vertical spatial component. The hydrostatic pressure is eliminated from the
momentum equation by combining it with the buovancy term. Also the term |u|?/2 is
combined with the term p/po to form a total pressure. p. The constant dvnamic viscosity u
divided by the density p is taken as a constant kinematic viscosity coefficient ». The system
of equations that are to be solved numerically is
(;—I:—uxw+V13—Tg:z/(§VV~u—V><w) (19)
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a0 v dt ~ Q a0
To obtain the pressure perturbation, take the divergence of the momentum equation
AR
atu+V~F+V2ﬁ:0 (22)

where all the convective and diffusive terms have been incorporated in the term F. This
equation is solved with a fast Poisson solver.

The numerical techniques for solving equations of this form may be found in Reference [3].
Briefly. the equations are a mixed parabolic/elliptic system of partial differential equations:
i.e.. the equations for the temperature and for the velocity components are parabolic, whereas
that for the pressure is elliptic. The equations which govern low Mach number flow are well
known to have this mixed character. Analyvtical studies of the ability of several candidate
finite difference schemes to calculate internal gravity waves without dissipation led to the
conclusion that methods of second order accuracy in space and time are highly desirable for
systems of this tvpe [4]. A simple Runge-Kutta second order scheme is used — all spatial
derivatives are approximated by second order central differences and the flow variables are
updated in time following a simple predictor-corrector explicit method. The grid is taken
to be uniform in the coordinate directions although the spacings in each direction may be
different.

To simplify the calculation. some additional approximations were implemented. First.
it was assumed that the rooms downstairs of the main floor served only as a reservoir for
the pressure build-up. Specifically. the overall enclosure volume V in Eq. (12) was taken to
be that of the actual underground facility, even though the computational domain consisted
only of the compartments on the main floor. The main reason for this approximation is
that the fast Poisson solver used in the problem uses Fast Fourier Transforms (FFT) in two
spatial directions, and works most efficiently for rectangular, uniformly-gridded problems.!
To include the downstairs compartments would have enormously increased the size of the
computational problem without delivering any important changes to the conclusions drawn.

A similar approximation technique was used at the inflow and outflow vents. To simulate
the addition of mass and energy from the rocket motor, a large vent was opened up on the
floor of the burn room. Hot gas was pushed in through the vent so as to mimic the mass and
energy release of the motor, but not the high velocities for which the methodology employed
here is not suited. Similarly, the small exit vent was simulated with a larger opening which
vented an equivalent loss of mass. This mass loss was based on the orifice formulae given in
Eq. (17). In the case of both the inflow and outflow vents, it is not the objective of the study
to simulate exactly the dynamics of the flow at the nozzle of the rocket motor nor at the
exit vent. Indeed, given the size of the entire enclosure. it is impossible with the available
computational resources to adequately resolve the flow in these regions while simultaneously

'The uniform gridding of the computational domain is required in two spatial directions, the third direc-
tion may be non-uniformly gridded to cluster cells where most of the action is.



simulating the flow in the entire facility. Rather, the objective of the computation is to
predict the overall transfer of energy from the burn room throughout the entire enclosure.

The greatest uncertaintyv in a simulation of a fire or some other large thermal source
1s determining the heat release rate, as well as the exchange of energv between internal.
kinetic. mechanical and radiative forms. For the problem at hand. an estimated 540 lb
(245 kg) of fuel is to be consumed in 2 s. The cnergy content of the fuel is estimated to
be 1,093 cal/g. and it is estimated that roughly 60% of this will be converted to kinetic
energy by the rocket motor, 40% to internal energy of the gas. For both the zone and field
models emploved in this study. however. this breakdown of the total enthalpy into parts
is not relevant because neither model is designed to predict the behavior of the near sonic
velocities of gases emanating from the motor, nor the impact of the jet on the wall of the
burn room. In fact. given the ideal assumptions of most fluid models. it is unlikely that any
could truly describe the exchange of energyv taking place in or near the motor. Instead an
estimate must be made of the fraction of the total enthalpy which characterizes the burning.
Tvpically for a fire, it is assumed that about 30% of the heat released is lost to thermal
radiation. Some of this radiative energy is reabsorbed by the gas. some by the walls. For the
rocket motor. much of the total energy is converted into the kinetic energv of a high speed
jet impinging on a concrete wall. It is very difficult to predict how much of thal energy
remains kinetic and how much is converted back to internal energy or absorbed by the wall.
Given all of these uncertainties. it will be assumed that about half of the total energy is lost
in the burn room in the first few seconds due to the absorption by the walls of internal and
kinetic energy.

As discussed above. the energy is introduced into the problem by pumping hot gas into
the burn room through a large vent at a modest velocity. The temperature and velocity of
the gas depends on two quantities: the mass flux rate and the effective enthalpy. Assuming
that 245 kg of fuel is gasified in 2 s. the mass flux rate 72 is taken as 122.5 kg/s. The effective
enthalpy is assumed to be 500 cal/g (2090 J/g), from which the temperature of the gas can
be estimated from

T
/ e,dr ~ 2.1 x 10° J/kg (23)
Then the exit velocity u. can be found from
pette A = 122.5 kg/s {24)

where p. is the density of the gas (found from the temperature) and A, is the area of the
vent. The exit velocity of the gas is about 30 m/s. about a tenth of the sonic speed.

The calculation simulates 60 seconds of the experiment. starting just as the rocket motor
is switched on. The calculation requires about 75 hours on an IBM RISC'/6000 workstation,
with over half of that time devoted to the 2 seconds during which the rocket was firing.
The underground enclosure is discretized into 524,288 uniformly spaced cells (128 in both
horizontal directions and 32 in the vertical). The dimensions of an individual cell are 21 ¢cm
by 21 ecm by 9.5 cm. The temperature. velocity and pressure of the air in each cell is stored
periodically for analysis. Also. particles are introduced through the hot gas vent and tracked
so as to provide an animation of the simulation.

Because the calculation is time-dependent and there are three spatial coordinates. it is
difficult to present all the results in a simple way. Temperature data is saved periodically dur-
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NEAR CEILING TEMPERATURES (C), 10 s AFTER IGNITION
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hallways.
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ing the calculation. from which two-dimensional slices can be taken and contoured. Fig. (3)
shows the ceiling temperatures 10 s after ignition. Notice that the rooms that are not vented
do not heat up nearly as much as the hallways because the hot gases in the upper laver are
blocked by the soffits above the doorways. The temperatures in the two hallways H1 and
H2 are shown at various times during the calculation. Fig. 4 shows the temperature profiles
in hallway H1 every 10 seconds following ignition of the rocket engine. The stratification of
the hot gases emanating from the burn room (left) is evident from the contour plots. with
temperatures ranging from about 200 C' near the floor to about 1400 C' near the ceiling.
This stratification also defines the movement of the air from the burn room along the ceiling
towards the exit vent. with cooler air moving near the floor in the opposite direction. This
bi-directional flow persists until the average enclosure pressure returns to atmospheric after
about 40 s. At this point. the air is relatively calm. and the temperature gradually decreases
as heat is lost to the walls. Most of the hotter gases from the burn room are confined to
the hallways since the soffits above the compartment doorwavs impede much of the smoke
and hot gases from entering. Once the hot laver in the hallwayv grows thicker than the soffit
height, then the hot gases spill over into the individual rooms.

Fig. 5 shows the temperature profiles in the hallway H2. The temperatures here vary
from about 100 €' to about 800 C'. Once the smoke and hot gases reach the end of the hallway
H2, the hot layer begins to thicken. Temperatures in this layer vary between 200 C to about
400 C. and this gradually decreases as the heat is lost to the boundaries and to the vent. It
is clear from the figure that the temperature in the room R2 is significantly less than that
of the hallway due to the protection provided by the soffit above the door and the fact that
most of the hot gases from the burn room flow towards the exit vent.

5 Conclusions

The scenario described in this paper stretches the limit of modern numerical fire prediction
techniques. both the zone models and the field models. An event as violent and rapid as the
firing of a rocket in a small underground enclosure is not usually considered a typical fire
scenario due to the extremely high pressures and velocities generated. Like most interesting
physical problems. understanding of all processes cannot be gained through one experiment
or one numerical model, but rather through a variety of techniques which trv to divide the
problem into manageable parts. For the problem described here. no one numerical model can
satisfactorily describe all aspects of the problem. Nevertheless, a combination of techniques
has been used to describe many aspects of the event, but certainly not all. The initial violent
firing of the rocket is described only in terms of averaged quantities in the burn room during
the first few seconds of the experiment. After that. the field model describes the movement
of heat and combustion products throughout the enclosure at a spatial resolution which of
about 23 cm. This high resolution is important when describing the mixing of the hot gases
emanating from the burn room with the cooler gases outside.
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Figure 4: Temperature profiles in the hallway H1 at increments of 10 seconds
following the ignition of the rocket engine. The burn room is to the left side in
the figures.
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Figure 5: Temperature profiles in the hallway H2 at increments of 10 seconds
from the ignition of the rocket engine. The solid black line indicates the wall
separating hallway H1 from room R2.
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